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nonlinearity that are Kerr law, parabolic law, power law and dual-power law are considered.  
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1. Introduction 
 

The study of optical solitons is important in the area 

of telecommunications and electromagnetics [1]. Optical 

solitons, the localized electromagnetic waves that transmit 

in nonlinear media without changing their width, 

amplitude and transverse velocity, are the outcome of 

delicate equilibrium between the dispersion (or diffraction) 

and nonlinearity [2-5]. Just for these unique properties 

make optical solitons as the most ideal carriers of 

information, are widely applied to the long distance optical 

communications and ultra-fast signal processing systems. 

Optical soliton communications have many advantages 

that the traditional optical fiber communications 

don't have, such as the high information capacity, long 

transmission distance, high transmission rate, low bit error 

rate, good confidentiality and strong anti-interference 

ability and so on.  

The dynamics of the propagation of optical solitons 

through optical fibers is ruled by the nonlinear 

Schrödinger Eq. (NLSE) [1-10]. When the space-

modulated group velocity dispersion (GVD) and non-Kerr 

law nonlinearity are considered, the governing Eq. is given 

by  
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In Eq. (1), the first, second and third terms, 

respectively, are the temporal evolution, GVD and non-

Kerr law nonlinear terms. Here )(xa  and )(xb  represent 

the coefficients of GVD and non-Kerr law nonlinearity 

that are the functions of spatial variable x . The real-

valued algebraic function F  in Eq. (1) represents the type 

of non-Kerr law nonlinearity. For space-modulated dual-

power law nonlinearity (it describes the saturation of the 

nonlinear refractive index) [2,6], the expression for F  has 

the form 
nn

uxuuF
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)()(  , then Eq. (1) becomes 
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where )()()( xxbxc  . It needs to be noted that the dual-

power law nonlinearity falls back to Kerr law nonlinearity 

(when 0  and 1n ), parabolic law nonlinearity (when 

1n ) and power law nonlinearity (when 0 ).  

The main work described in this paper is to construct 

exact optical soliton solutions to Eq. (2) by employing the 

Lie group method. As a consequence, Lie symmetries and 

canonical transformations are obtained, and explicit 

soliton solutions are found. Finally, Other laws of 

nonlinearity are discussed. They are Kerr law, parabolic 

law and power law.  

 

 

2. Lie group analysis 
 

Assume that Eq. (2) has stationary solutions in the 

form 

 

            )exp()(),( tixtxu                         (3) 

 

where )(x  represents the soliton amplitude that is a real 

function of spatial variable x  to be determined later, 

while   is a non-zero real constant. Substituting Eq. (3) 

into Eq. (2) yields 
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where )()( xaxf  , 

)()()( xaxbxg  , )()()( xaxcxh  . 

 

Lie group method is a very powerful method to study 

nonlinear Eqs. arising in the field of nonlinear science. In 

this section, we will perform Lie group method [11-14] to 

the second-order nonlinear variable-coefficients ordinary 

differential Eq. (ODE), i.e. Eq. (4).  

If Eq. (4) is invariant under the one-parameter Lie 

group of point transformations  
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with infinitesimal generator 

 

       








 ),(),( x

x
xV                  (7) 

 

where the coefficient functions ),(  x  and ),(  x  are to 

be determined later. The vector field (7) is a generator of 

point symmetry of Eq. (4) if 
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where Vpr )2(  represents the second prolongation and is 

defined by 
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here ),(  xx  and ),(  xxx  are given by  
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where 
x

D  denotes the total derivative operator and is 

defined by 
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From Eqs. (8)-(12), one can obtain the determining 

equations for the symmetry group 
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Solving Eqs. (13)-(16), we get the only Lie point 

symmetry generator of Eq. (4) 
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with the constraint conditions 
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where l , 
0

g , and 
0

h  are the arbitrary real constants.  

According to the invariance of the energy and 

translational invariance, we get the canonical 

transformation 
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where   x
dp

0

1 )(  

Under the transformation (21), Eq. (4) reduces to a 

second-order constant-coefficients ODE reads 
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where 
222

0
2

1

4

1
fplpppk   is a constant due to 

0
0

dxdk  from Eq. (20).  

It needs to be noted that one can get )(xp  by solving 

Eq. (20) when GVD coefficient is known, and then obtain 

the Lie point symmetry generator (17) and canonical 

transformation (21). Therefore it is our primary task now 

to seek analytical solutions to Eq. (23), for the sake of 

simplicity, we take 0l  in our calculations. 

 

 

3. Results and discussion 
 

Integrating Eq. (23) once and choosing the integration 

constant to be zero, then making some simple calculations 

yields 
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Solving Eq. (24), one get 
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Now taking 
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Thus, Eq. (25) gives the wave profile  
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Finally, explicit 1-soliton solutions to Eq. (1) with 

dual-power law nonlinearity are got by substituting Eqs. 

(27) and (21) into Eq. (3).  

 
 

3.1 Kerr law nonlinearity 

 

The Kerr law nonlinearity, also known as the cubic 

nonlinearity, arises in a light pulse propagating in an 

optical fiber that faces nonlinear responses from non-

harmonic motion of electrons bound in molecules [2, 6]. If 

0c  (i.e. 0 ) and 1n , the dual-power law 

nonlinearity falls back to the  Kerr law nonlinearity, then 

the governing Eq. of optical solitons through space-

modulated optical fibers with Kerr law nonlinearity is 

given by 
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Based on the same ideas as in Section 2, we can get 

the following results: the Lie point symmetry generator of 

Eq. (28) is Eq. (17); the constraint conditions are Eq. (18) 

with 1n  and Eq. (20); the canonical transformation is 

also the Eq. (21).  

Now we just need to solve the following Eq. 
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Solving Eq. (29), one gets a bright soliton (bell 

soliton) profile 
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and a singular soliton profile 
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Eq. (30) imposes the constraints 0
0
k  and 0

0
g , 

while Eq. (31) imposes the constraints 0
0
k  and 0

0
g .  

Finally, explicit 1-soliton solutions to Eq. (1) with 

Kerr law nonlinearity (i.e. Eq. (28)) are got by substituting 

Eqs. (30), (31) and (21) into Eq. (3).  

Here, we must emphasize that there exist more 

solutions, this is because, in this case, Eq. (23) reduces to 

the famous Jacobian elliptic Eq. reads 
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and all solutions of which are given in Ref. [15].   

 

 

3.2. Parabolic law nonlinearity 

 

The parabolic law nonlinearity, also known as the 

cubic-quintic nonlinearity, originates from the nonlinear 

interaction between Langmuir waves and electrons [2, 6]. 

If 1n , the dual-power law nonlinearity reduces to the 

parabolic law nonlinearity, then the governing Eq. of 

optical solitons through space-modulated optical fibers 

with parabolic law nonlinearity is given by 
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Based on the same ideas as in Section 2, we can get 

the following results: the Lie point symmetry generator of 

Eq. (33) is Eq. (17); the constraint conditions are Eqs. 

(18)-(19) with 1n  and Eq. (20); the canonical 

transformation is also the Eq. (21).  

Now we just need to solve the following Eq. 
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Solving Eq. (34), one get 
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Now taking 2
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2

0
12163 kkhg   yields 
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Thus, Eq. (35) gives the wave profile  
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Finally, explicit 1-soliton solutions to Eq. (1) with 

parabolic law nonlinearity (i.e. Eq. (33)) are got by 

substituting Eqs. (35) and (21) into Eq. (3).  

Here, we must also emphasize that there exist more 

solutions; this is because, in this case, Eq. (23) reduces to 

the famous 6U  model reads 
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and all solutions (constructed by using the Jacobian elliptic 

Eq. expansion method) of which are given in Ref. [15].   

 

 

3.3. Power law nonlinearity 

 

The power law nonlinearity arises in various materials 

[2, 6]. If 0c  (i.e. 0 ), the dual-power law 

nonlinearity reduces to power law nonlinearity, then the 

governing Eq. of optical solitons through space-modulated 

optical fibers with power law nonlinearity is given by 
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Based on the same ideas as in Section 2, we can get 

the following results: the Lie point symmetry generator of 

Eq. (39) is Eq. (17); the constraint conditions are Eqs. (18) 

and (20); the canonical transformation is also the Eq. (21).  

Now we just need to solve the following Eq. 
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Solving Eq. (40), one gets the wave profile 
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Finally, explicit bright 1-soliton solution to Eq. (1) 

with power law nonlinearity (i.e. Eq. (39)) is got by 

substituting Eqs. (41) and (21) into Eq. (3). 

 

 

4. Conclusions 
 

 Exact optical solitons to the NLSE with space-

dependent dispersion and four types of non-Kerr law 

nonlinearity are constructed with the aid of the Lie group 

method. These nonlinearities are the Kerr law, parabolic 

law, power law and dual-power law. The Lie point 

symmetry generator and canonical transformation to the 

second-order nonlinear variable-coefficients ODE (i.e. Eq. 

(4)) are got.  
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